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A research code has been written to solve
an elliptic system of coupled nonlinear par-
tial differential equations of conservation
form on a rectangularly shaped three-di-
mensional domain. The code uses the
method of collocation of Gauss points with
tricubic Hermite piecewise continuous poly-
nomial basis functions. The system of equa-
tions is solved by iteration. The system of
nonlinear equations is linearized, and the
system of linear equations is solved by iter-
ative methods. When the matrix of the col-
location equations is duly modified by us-
ing a scaled block-limited partial pivoting
procedure of Gauss elimination, it is found
that the rate of convergence of the iterative

method is significantly improved and that a
solution becomes possible. The code is used
to solve Poisson’s equation for a model
semiconductor problem. The electric poten-
tial distribution is calculated in a metal-
oxide-semiconductor structure that is
important to the fabrication of electron
devices.
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1. Introduction

As the features of electron devices are made smaller
and less isolated, it becomes increasingly important to
use three-dimensional models to characterize and
understand the behavior of the semiconductor devices
and to monitor and control the material processes that
affect fabrication.

Accordingly, the numerical solution of three-dimen-
sional models becomes increasingly important as well
[1–6]. To assist in these aims, a research code has been
written to solve a class of simple boundary value prob-
lems that involve an elliptic system of coupled nonlinear
partial differential equations (PDEs) of conservation
form on a rectangularly shaped three-dimensional
domain.

The code uses the method of collocation of Gauss
points with a set of tricubic Hermite piecewise continu-

ous polynomials as basis functions. The elliptic system
of N PDEs is of the form:

=? (ai =ui ) = fi , i = 1,2 . . . ,N, (1)

where

ui = ui (x ),

x = (x1, x2, x3) = (x, y, z) { D ,

u = (u1, u2, . . . , uN),

ai = ai (x , u ),

fi = fi (x , u , ­u /­x, ­u /­y, ­u /­z),

are defined on a single rectangularly shaped three-
dimensional domainD. Each solutionui is required to
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satisfy a generally nonlinear but linearizable boundary
condition of the form:

gi (xk, u , ­u /­x, ­u /­y,­u /­z) = 0, xk { ­D , (2)

where k indexes collocation and mesh points on the
domain boundary­D. While these forms are quite gen-
eral, it is well-known that a number of conditions on the
functionsa, f , andg must be satisfied for a solutionu to
exist. While these conditions are of great importance,
they are not discussed here, but are discussed elsewhere
[7–9], and it is assumed that they are satisfied here.
Further discussion regarding existence, uniqueness,
stability, well-posedness, definiteness, the collocation
method, and methods of solution may be found in the
literature [7–17].

Few system solvers seem to be generally available
today because of the inherent difficulty in solving non-
linear problems, the large resource requirements for
three dimensions, and the need to monitor and control
the local refinement of the discretization mesh that is
needed to maintain numerical stability and provide
favorable rates of convergence. These solvers tend to use
the linear finite element method (FEM) because of the
simplicity of the basis functions and the ease in which
the elements can be made to cover domains of compli-
cated shape. And, while the more sophisticated system
solvers may make available a number of powerful fea-
tures to the user, e.g., a geometric modeller to help form
and discretize the domain, the packaged solvers may
also restrict the form of the PDEs that may be solved.

This restriction can become a problem when the
allowed form is not sufficiently general to handle the
kind of nonlinearies that the user wants to study, as was
found to be the case with one commercially available
FEM system solver [18] and the semiconductor device
system of equations. One may hope that later versions of
these packages would make it easier for their PDEs to be
specified via some user-supplied subroutines like that
found in B2DE [10] or PLTMG [19] but in three dimen-
sions, and that they would incorporate some form of the
multigrid algorithm as well.

Another reason that the linear finite element method
is likely to be used in a solver is that the collocations
equations are known to be difficult to solve [12,14–17].
Finding a solution to the collocation equations usually
requires a direct solution by Gauss elimination, but fill-
in, which degrades sparsity, becomes a problem for
large systems of equations. Iterative methods have been
applied [9,15,16], but this has usually involved scalar
problems, not systems. Furthermore, collocation soft-
ware usually implement tensor product meshes to parti-
tion the domain. While this expedites code development,

it limits the shape of the domains and becomes less
efficient for domains of higher dimensionality even with
an adaptive mesh refinement capability or strategy.

Fortunately, much progress has been made in solving
large sparse linear systems of equations by using itera-
tive methods [20–29]. To help solve the large linear
system of collocation equations, it has been convenient
to use software packages like QMRPACK [20–22] and
LSQR [23, 24]. When such solvers are applied directly
to the collocation equations, it has been found that the
convergence may be slow or nonexistent, even with
preconditioners like the dual Threshold Incomplete LU
factorization (ILUT) and the Symmetric Successive
Overrelaxation (SSOR) methods [22, 26]. But, when the
matrix of collocation equations is duly modified by
using a scaled block-limited partial pivoting procedure
of Gauss elimination [27], it is found that the rate of
convergence of the iterative method is significantly
improved and that a solution becomes possible.

This paper presents those considerations that have
been found to be important when developing software
that uses the collocation method to solve a class of
simple boundary value problems in three dimensions.
Section 2 presents an overview of these considerations;
Sec. 3 presents the implementations and software
requirements; and Sec. 4 presents an example of this
implementation by formulating Poisson’s equation for a
model semiconductor problem.

2. Overview of Considerations

Approximating a solutionu of Eqs. (1) and (2) in-
volves, in part, the following considerations [12]: (i)
partitioning the domainD with a finite-element mesh
V, (ii) determining a piecewise continuous polynomial
approximationU defined over the partitionV, (iii)
linearizing the system of PDEs and boundary conditions
to establish the collocation equations, (iv) solving the
linear system of collocation equations, (v) updating the
solution and monitoring the iterative procedure to con-
vergence, and (vi) monitoring local and global error
estimates of the solutionU on V to provide a feedback
mechanism to adaptively refine the partition onD to
reduce the local and global error of the solution to within
some predetermined or threshold value. While these
considerations are quite general in nature, this paper
discusses only those features that have been imple-
mented into the current version of the research code.
They include items (i–v), but not (vi), with particular
attention given to item (iv). While the implementation
of item (vi) is very important and is a topic that
has received and continues to receive much attention
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in the literature [7], no attempt is made to consider it
here, but is left to future work.

Because Eqs. (1) and (2) may be nonlinear, a conven-
tional method of solution is used. The equations are
solved iteratively with Newton’s method. The system of
nonlinear equations are linearized in the usual manner;
see Appendix A. The system of linear equations are
solved by an iterative procedure that uses QMRPACK
[22], a software package that implements both the ILUT
and SSOR preconditioners, the look-ahead Lanczos
algorithm, and the quasi-minimal residual method.
While it is known [12,14–17] that the collocation equa-
tions are difficult to solve, i.e., usually requiring a direct
solution by Gauss elimination, it is found that when the
matrix of the collocation equations is duly modified by
using a scaled block-limited partial pivoting procedure
of Gauss elimination, the rate of convergence of the
iterative procedures is significantly improved, and a
solution becomes possible.

The idea behind the scaled block-limited partial piv-
oting procedure is to impart additional orthogonaliza-
tion into the initial or usual set of collocation equations,
and this, of course, reduces the amount of work that is
needed to find a solution by the preconditioner and the
Krylov method [26] that is used in iterative solvers like
QMRPACK and LSQR. The termblock-limitedrefers to
limiting the pivoting procedure to the set of collocation
equations that are formed by the collocations points that
are nearest to and positioned about or on a given mesh
point. There are eight such collocation points for each
mesh point of the three-dimensional domain, and thus
there are eight collocation equations per mesh point per
solution component or PDE that is being considered.
Here, the interest is in determining the independent vari-
ables of the local collocation vector of the Newton step;
see Appendix B.

Full pivoting of Gauss elimination is applied to the set
of eight equations so that the matrix of coefficients of
the shuffled variables of the local collocation vector
becomes upper triangluar. The pivot elements are deter-
mined in the usual manner, but where the rows under
consideration are kept scaled to unitL2 seminorm.
Rescaling equalizes the rows during pivot selection, and
this stabilizes the numerics, as is well-known. This pro-
cedure is convenient, because it automatically orders the
equations and the variables without special consider-
ation being given to the boundary conditions. This is
important when one later uses an iterative solver that
does no partial pivoting. After the entire matrix of collo-
cation equations is duly modified, the variables may be
rescaled to improve the behavior of iteration. Currently,
the variables are scaled such that the matrix product of
the matrix and its transpose have unit diagonal elements,

i.e., (JTJ)ii = 1, whereJ refers to the collocation matrix,
and the presence of two like indices does not imply
summation.

The matrix of collocation equations is then submitted
to the linear equation solver QMRPACK with ILUT
preconditioning. While the ILUT of QMRPACK allows
the user to specify left, right, or left and right precondi-
tioning, and the number and tolerance of fill-in per row,
these are currently set as left and right, 0, and 1310–6,
respectively. These values are not necessarily optimal.

Following the iterative solution of the system of linear
equations, i.e., the Newton step solutiony, the current
solutionu of the system of PDEs is then updated by the
Newton step, i.e.,u (k+1) = u (k) + y (k), wherek indexes the
outer loop of iterations.

At the end of each outer loop of iterations, a decision
is made regarding the convergence properties of the last
iteration. If theL2 seminorm of the residual falls below
some predetermined value or if theL2 seminorm of the
residual fails to be reduced in five iterations, then the
outer loop of iterations is interrupted, the solution is
breakpointed, and control is returned to the calling
program. Otherwise, the outer loop of iterations is
continued.

3. Implementation

As mentioned in Ref. [12], the implementation of the
collocation method to solve a system of PDEs involves a
number of considerations. They include defining: the
array allocations to satisfy the workspace requirements;
the problem by specifying the domain, the PDEs, and
the boundary conditions; the discretization of the do-
main; and the initial value solution. These are input to
the collocation solver.

The collocation solver is then used to: form the collo-
cation vector (see Appendix B), form the collocation
equations, and solve the collocation equations by itera-
tion. The solution procedure involves a nest of iterations,
an inner loop for the linear problem and an outer loop for
the nonlinear problem.

Regarding software development, most of the code
was written in standard Fortran-77, except where a few
variable and subroutine names were allowed to exceed
the six character length limit. The maximum length of a
subroutine name was 10 characters, e.g., prefixing qmr_
to the names of two subroutines that were taken and
modified from QMRPACK. Lengthy names were cho-
sen for sake of clarity of purpose or origin. While most
variable/subroutine names are of six characters or less,
the few lengthy names ought to pose no problem with
the current generation of compilers.
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3.1 Specifying the Array Allocations

The array allocations used in the program are of two
kinds, those that do and those that do not depend on the
four parameters that determine the maximim allowed
size of the collocation vector. The collocation vector is
discussed further in Appendix A. The four parameters
are: mpde, mxgrid, mygrid, mzgrid; and they refer to
the number of solution components or PDEs to be
solved, the number of grid points associated with the
x-axis, the number of grid points associated with the
y-axis, and the number of grid points associated with
the z-axis, respectively. These must be set before the
program is compiled and linked. The four parameters
are set in a file named defnit.

A few other definition files use these parameters to
define other parameters and to allocate arrays and
named common blocks. The files have suggestive names
like: defnit.2, stackg., stackj., stack5., stack6., stackp.
[1–3], stackw.2, where stackg contains arrays for the
grid discretization, stackj contains arrays for the Jaco-
bian, stackp contains arrays for the preconditioners and
QMRPACK, stackw contains arrays for workspace for
LSQR, etc., and where the brackets refer to the usual
Unix convention restricting wild-card searches over a
range of characters. These files are intended to remain
unmodified by the user. Most of the arrays are assigned
to a named common block. These arrays are made avail-
able to the subroutines via the Fortran INCLUDE state-
ment. EQUIVALENCE statements occur in files
stackp.1 and stackw.2. Because the common blocks and
EQUIVALENCE statements are in definition files, it is
a relatively simple task to change the names of named
common blocks, if necessary.

While passing arguments via common blocks instead
of subroutine argument lists restricts the generality of
the subroutines, there is merit in simplifying the argu-
ment lists especially during the initial phases of code
development. Further refinements are possible, but
these are left to the discretion of the user.

3.2 Specifying the Domain and the PDEs

The domain is a rectangularly shaped three-dimen-
sional block volume region where the coordinate system
is Cartesian and each of the six boundaries has a surface
normal vector that is parallel with a coordinate axis. The
domain is discretized by the discretization of the axes.
The finite-element mesh of an axis is specified by an
array of values that are ordered as monotonically in-
creasing. Hence, the domain is specified by using three
arrays, one for each axis.

The boundary value problem defined by Eqs. (1) and
(2) is specified via the function termsa, f, andg. These

terms are made available to the collocation solver by
using three user-supplied external subroutines, one for
each terma, f , and g (see Appendix A). This was
inspired by the design of B2DE [10]. Because one sub-
routine is used to make all of the calls to the subroutine
of the function terma, it is relatively straightforward to
modify the program to form the collocation matrix of a
more general class of second-order differential operator,
e.g.,

O3

a=1
Oa

b=1

aiab (x ,u ,­u /­x1, ­u /­x2, ­u /­x3)
­2ui

­xaxb
, (3)

which would be needed for non-Cartesian coordinate
systems. (Of course, this could affect the convergence
properties of the iterative methods that are used to solve
the linear algebra problem of the resulting set of colloca-
tion equations, perhaps by requiring more robust pre-
conditioning.) Regarding the subroutine of the function
term g, an integer variableisw is used in the argument
list to specify the direction of the surface normal vector.
The magnitude ofisw determines the coordinate axis,
where values {1,2,3} refer to {x1,x2,x3} axes, respec-
tively. The sign ofisw determines the direction of the
surface normal. No provision is made for periodic
boundary conditions.

3.3 The Initial Value Solution

The initial value solution is passed to the collocation
solver as an array of point function values on the finite-
element mesh. While the array is of dimension one, the
elements are organized according to the Fortran con-
vention dimension statement with the argument
uu(nx,ny,nz,nu), where

uu refers to the name of the array,

nx refers to the number ofx-axis grid points,

ny refers to the number ofy-axis grid points,

nz refers to the number ofz-axis grid points, and

nu refers to the number of solution components or
PDEs to be solved.

When the array is passed to the collocation solver, the
collocation solver uses subroutines DB3INK to fit the
point function with a tensor product of one-dimensional
B-splines, and DB3VAL to evaluate the partial deriva-
tives that are needed to form the initial collocation
vector. B3INK/DB3INK and B3VAL/DB3VAL are
based on the methods of de Boor [30] and are dis-
tributed by GAMS [31].
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3.4 The Argument List

The subroutine name of the collocation solver is
ESPDESC, an acronym for Elliptic System of PDEs
Solved by Collocation. The argument list of the subrou-
tine is (nx, ny, nz, nu, xx, yy, zz, uu, aa, ff, gg, lu, iprint,
init, iout, nwrk, wwrk),

where

nx refers to the number of values in arrayxx,

ny refers to the number of values in arrayyy,

nz refers to the number of values in arrayzz,

xx refers to the array ofx-axis grid point values,

yy refers to the array ofy-axis grid point values,

zz refers to the array ofz-axis grid point values,

uu refers to the array of the initial value solution,

aa refers to the user-supplied external subroutine
of a,

ff refers to the user-supplied external subroutine
of f ,

gg refers to the user-supplied external subroutine
of g,

lu refers to the array that determines which PDEs
are active to identify which solution components
undergo variation during iteration,

iprint refers to the level of printing diagnostic mes-
sages that ranges from 1 for minimal to 6 for
maximal output,

init refers to the initialization switch that signals the
start or continuance of a calculation,

iout refers to the unit variable for diagnostic output,

nwrk refers to the size of arraywwrk, and

wwrk refers to the workspace array used by DB3INK
to spline fit the point function of the initial value
solution.

Further discussion of the arguments may be found in the
prologue of the subroutine. Following a normal return
from the subroutine, the calculated solution may be
found in three places: the collocation vector that is listed
in the file stackg., the breakpoint solution that is saved
in file x.bkpt, and the point function values that are
returned in arrayuu.

4. The Model Semiconductor Problem

The three-dimensional collocation solver was devel-
oped to model the measurements by a scanning capaci-
tance microscope of a semiconductor wafer that con-

tains an ion-implanted impurity region as is used in the
fabrication of electron devices. The measurement pro-
cess involves placing a small metal probe-tip near the
surface of a uniformly thin insulator layer that blankets
the surface of the doped semiconductor substrate. A
small bias voltage with an even smaller alternating cur-
rent component voltage is then imposed on the probe-tip
[32]. The component voltage displaces the electron and
hole distributions in the semiconductor slightly away
from the biased steady-state values. The differential ca-
pacitance is (DQ/DV), and a measurement of the capac-
itance (impedance) in the circuit of the probe and the
sample is used to infer the doping concentration in the
semiconductor region that is near the probe-tip. Such
information can be useful in monitoring a fabrication
process. To demonstrate the utility of the three-dimen-
sional collocation solver, the presentation here is limited
to that of estimating the size of the region in the semi-
conductor that is perturbed by the probe-tip bias.

The electron and hole distribution in the semiconduc-
tor region is determined by solving Poisson’s equation
for the distribution of the electric potential function,

=? («r=c ) = –(q/«0)(Nd–Na+p–n) , (4)

where q refers to the magnitude of the elementary
charge on the electron (1.602310–19 C), «0 refers to
the relative permittivity of free space (8.854310–18

F/mm), «r refers to the relative dielectric constant of the
material (11.9 for Si, 3.9 for SiO2, and 1.0 for air),Nd(x )
refers to the number density of the ionized donor impu-
rity distribution (mm)–3, Na(x ) refers to the number
density of the ionized acceptor impurity distribution
(mm)–3, n(x ) refers to the number density of the mobile
electron distribution (mm)–3, andp(x ) refers to the num-
ber density of the mobile hole distribution (mm)–3, and
c (x ) refers to the electric potential distribution (V). For
nondegenerate semiconductors with a parabolic band
structure at thermal equilibrium, the number densitiesn
andp are related to the potentialc via Boltzmann statis-
tics,

n = ni exp(+(c + c0)/f ), (5)

p = ni exp(–(c + c0)/f ), (6)

where

f = kT/q (7)

refers to the thermal voltage,T refers to the tempera-
ture (300 K), k refers to the Boltzmann constant
(8.617310–5 eV/K), c0 refers to a constant that
establishes the zero of the potential (Fermi energy),
and ni refers to the intrinsic carrier concentration
(1.379310–2 (mm)–3 [33].
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The electric potential in the insulator region is gov-
erned by Laplace’s equation, that is of the same form as
Eq. (4), except that the source terms on the right-hand
side of the equation are zero. At the insulator-semicon-
ductor boundary, the potential is continuous, and the
discontinuity of the normal component of the electric
displacment vector depends on the trapped interfacal
charge. Letting the interfacial charge density be zero,
and letting the semiconductor region and the insulator
region be labeled by 1 and 2, respectively, the boundary
conditions at the interface are

c1 = c2, (8)

and

«1
­c1

­n
= «2

­c2

­n
, (9)

wheren refers to an outward normal.
The configuration of the sample is that of a two-

layered structure. The thick layer is the semiconducting
region and is made of crystalline silicon (Si) with a low
concentration of ionized dopant impurities. The thin
layer is the insulating region and is made of amorphous
silicon dioxide (SiO2). While this is a model structure, it
ought to be realized that an actual fabrication process
may involve oxidizing the semiconductor surface either
before or after placing the photolithographic line mask
on the wafer, ion-implanting the wafer, and then remov-
ing the line mask. Furthermore, an annealing process
usually follows the implantation process to remove the
displacement damage of implantation and to activate or
ionize the implanted dopant impurities. These processes
can displace the initial implanted distribution relative to
the surface, and this is important in real applications.
However, for the calculations presented here, it is as-
sumed that the processing is such that these effects are
small and can be ignored. The ions are implanted into
bare silicon, and an oxide layer is placed on the surface
of the implanted silicon.

The geometry of the sample structure is presented in
Fig. 1. The unit of length is expressed inmm. The
coordinate system is chosen such that the domainD
containing both the insulator and the semiconductor
regions be given by (–1# x #1), (–0.02# y #1),
(–0.2# z#0). The semiconducting regionD1 is that
where (y $ 0), and the insulating regionD2 is that where
(y # 0). The (y= 0) plane forms the SiO2/Si interface
boundary and is the plane through which ion-implanted
dopants were implanted. They-axis is directed into the
substrate region. Thez-axis is aligned parallel with the
earlier line mask edge. Thez-axis is a direction of trans-
lational invariance, i.e., before the introduction of the
probe-tip as specified by the boundary conditions. The

x-axis is directed from the unimplanted masked region
to the implanted unmasked region.

Fig. 1. The geometry of the model sample structure.D1 refers to the
semiconductor region (0#y#1), andD2 refers to the insulator region
(–0.02#y#0).

The semiconductor region is uniformly doped with
arsenic; the donor concentration is 53103 (mm)–3.
The ion-implanted impurity doping distribution of
boron acceptors into silicon near a mask edge is deter-
mined by a Monte Carlo calculation [34]. The implant
voltage is 50 keV, and the number of sampling events or
histories is 13105. The dose is then rescaled to 13106

(mm)–2; the peak acceptor concentration is found to be
83106 (mm)–3. And finally, the dopant impurities are
fully ionized. The ion-implanted dopant distribution is
presented in Figs. 2 and 3. Figure 2 presents a contour
plot of the logarithm of the concentration of the ion-im-
planted boron dopant distribution near the line mask
edge, where the direction normal to the plane of the
figure is parallel with the earlier line mask edge and is
a direction of translational invariance. Figure 3 presents
a profile of the concentration of the ion-implanted boron
dopant distribution as a function of depth into the sub-
strate in a direction normal to the surface and in a place
far from the line mask edge that is exposed to the ion-
implantation beam.

The characteristic size of the probe-tip is 0.06mm.
The probe-tip is modeled as a square patch that is placed
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Fig. 2. A contour plot of the logarithm of the concentration of the
ion-planted boron dopant distribution near a line mask edge, as deter-
mined by TRIM Monte Carlo calculation [34]. The direction normal
to the plane of the figure is parallel with the line mask edge and is a
direction of translational invariance. The implanted surface is the
(y= 0) plane, where the masked region is (x#0).

Fig. 3. A profile of the boron concentration in silicon as a function
of depth normal to the surface far from a mask edge, (x> 0.69mm),
as determined by a TRIM Monte Carlo Calculation [34]. The im-
planted surface is the (y= 0) plane.

on the outer surface of the oxide, the (y = –0.02) plane.
The patch is centered generally about a point with some
variable valuexp but with fixed value (z = 0). The patch
is oriented such that the (z = 0) plane is a symmetry
reflection plane. For the calculations presented here,
(xp = 0), thus, the patch occupies the region where

(–0.03# x #0.03) and (–0.03# z# 0). The probe-tip
bias voltage is specified with the Dirichlet boundary
condition, (c = 3).

The back plane (y = 1) of the semiconductor is
grounded with the Dirichlet boundary condition,
(c = 0). Requiring charge neutrality at the grounded
plane setsc0. The remaining outer surfaces have Neu-
mann boundary conditions, where the normal derivative
of c is set to zero.

This problem involves two subdomain regions, the
semiconductor regionD1 and the insulator regionD2.
The method of solution involves cycling through the
subdomain regions, where the subdomains are treated
individually and in ordered succession, and where the
PDEs of each subdomain are solved. The boundary con-
ditions are specified in a manner that lead to their
becoming satisfied along the interface as the iterations
proceed unto self-consistency, i.e., convergence.

One procedure that is found to converge is to start
with the semiconductor region. The initial value solution
is set to the charge neutral solution, and the interface
boundary condition is specified as Neumann where the
normal derivative of the potential is set to zero, i.e.,
charge is not allowed to escape through the interface
boundary. Poisson’s equation is then solved in the semi-
conducting region. Figure 4 presents the two-dimen-
sional distribution (z = 0 plane) of the electric potential
of the initial value or charge neutral solution. Figure 5
presents the two-dimensional distribution (z = 0 plane)
of the electric potential of the calculated unbiased
steady-state or equilibrium solution. Figure 6 presents
the profiles of the electric potential of both the initial
value or charge neutral solution and the unbiased
steady-state or equilibrium solution as a function of
depth (y) from the interface and in an implanted region
far from the mask edge, (x = 1). The negative values of
the distribution are in accord with Eq. (5), where the
material isp-type due to the implanted boron, an accep-
tor.

The initial value solution of the insulating region is
then found by simply translating alongy the solution at
the interface boundary. Letting the interface boundary
condition be Dirichlet by Eq. (8), Laplace’s equation is
then solved in the insulating region. This provides a
newly determined value of the upper/lower bound of the
normal derivative of the solution in the semiconductor at
the interface, as found by using Eq. (9). The interface
boundary condition for the semiconducting region is
then updated by averaging this newly determined value
and the previous value of the normal derivative of the
solution in the semiconducting region, so that one may
again solve Poisson’s equation in the semiconductor re-
gion. This completes one cycle of the iterative procedure
[29].
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Fig. 4. A contour plot of the electric potential distribution of the
initial value or charge neutral solution in the semiconductor region
near the mask edge in the (z = 0) plane.

Fig. 5. A contour plot of the electric potential distribution of the
calculated unbiased steady-state or equilibrium solution in the semi-
conductor region near the mask edge in the (z = 0) plane.

The convergence of this procedure is believed to be
due, in part, to the property that the relative dielectric
constant of the semiconductor is greater than that of the
insulator. The normal derivative of the solution in the
semiconductor that is specified at the interface is
determined from that calculated in the insulator. This

Fig. 6. A profile of the electric potential of the initial value or charge
neutral solution (dashed line) and the unbiased steady-state or equi-
librium solution (solid line) in the semiconductor region, as a function
of depth normal to the surface far from a mask edge (x > 0.69mm).

involves the scale factor,«2/«1 = (3.9/11.9)≈ (1/3), that
is less than one and serves to dampen the numerical
error in the calculated solution. Physical arguments also
show that this procedure brackets the normal derivative
of the solution, and thus, the solution as well. A consis-
tent solution is usually found within 10 iterations.

Figures 7 through 10 present a representative study
of the results of calculation of the electric potential in
the neighborhood near the biased probe-tip region.
The probe-tip or patch region bias is 3 V. Figures 7a and
7b present the potential distribution in the insulator
region in the (z = 0) plane. Figures 8a and 8b present
the potential distribution in the insulator region in the
(y = –0.02) plane. Figures 9a and 9b present the poten-
tial distribution in the semiconductor region in the
(z = 0) plane. Figures 10a and 10b present the potential
distribution in the semiconductor region in the (y = 0)
plane.

Incidently, it may be worthwhile to comment
on a more practical matter regarding the calculation,
the matter of grid discretization. After it was found
that the probe-tip induced a relatively localized per-
turbation on the unbiased steady-state equilibrium
solution, one could then improve the representation
of the solution near the probe-tip region if the model
semiconductor problem were broken into two parts.
Part 1 involved solving the unbiased steady-
state equilibrium solution in the planar semiconductor
region, where (–1# x # 1) and (0# y #1).
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Fig. 7. The potential distribution in the insulator region near the probe-tip region in the (z = 0)
plane, where (–0.14# x # 0.14), (–0.02# y # 0), and (–0.76# c # 3.0). (a) surface profile and
(b) surface contours. The probe-tip bias is 3 V.
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b

Fig. 8. The potential distribution in the insulator region near the probe-tip region in the
(y = –0.02) plane, where (–0.14# x # 0.14), (–0.14# z # 0), and (–0.76# c # 3.0). (a) sur-
face profile and (b) surface contours. The probe-tip bias is 3 V.
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Fig. 9. The potential distribution in the semiconductor region near the probe-tip region in the
(z = 0) plane, where (–0.14# x # 0.14), (0# y # 0.14), and (–0.84# c # 0.18). (a) surface
profile and (b) surface contours.
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Fig. 10. The potential distribution in the semiconductor region near the probe-tip region in the
(y = 0) plane, where (–0.14# x # 0.14), (–0.14# z # 0.14), and (–0.76# c # 0.18). (a) surface
profile and (b) surface contours.
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Part 2 involved solving the biased steady-state solution
in a small volume region near and about the probe-tip.
The size of this small probe-tip region was determined
subjectively by requiring that it be a little larger than the
size of the region that is being perturbed by the probe-
tip, so that Dirichlet boundary conditions could be used
to match the solution to the unbiased steady-state or
equilibrium solution. The small probe-tip region was
chosen to be given by (–0.14# x # 0.14), (–0.02# y#
0.14), and (–0.14# z # 0). Dirichlet boundary condi-
tions were used along the boundaries where (x = 60.14),
(y = 0.14), and (z = 20.14). After the solution was
found, it was evaluated on a uniform grid over the small
probe-tip region. These point function values were then
used by the plotting package to form the plots that are
presented in the figures. Transferring the solution be-
tween the two grids introduced small changes into the
the final presentation of the solution. A more careful
handling of the solution would eliminate these changes.

The asymmetry of the contours in Figs. 9b and 10b is
due to the asymmetry of the ion-implanted dopant dis-
tribution about (x = 0). Compared to the smooth distri-
bution near the origin that is presented in Fig. 5, Fig. 9b
shows that the potential is locally perturbed from the
equilibrium solution. The mobile electron distribution is
attracted or displaced toward the probe-tip region when
the probe-tip potential is above that of the equilibrium
solution, which is certainly satisfied by being 3 V above
the Fermi level. The characteristic size of the perturba-
tion region is of the order of 0.1mm. Since the differen-
tial capacitance is a measure of the displaced charge, the
measurements of the differential capacitance would then
be sensitive to the dopant concentration within this dis-
tance, i.e., 0.1mm, from the surface. Here, a small
perturbation region is important to the success of the
differential capacitance technique in providing a sensi-
tive nondestructive measurement of the surface dopant
concentration.

5. Summary

A research code has been written to solve an elliptic
system of coupled nonlinear partial differential equa-
tions of conservation form on a rectangularly shaped
three-dimensional domain. The code uses the method of
collocation of Gauss points with tricubic Hermite piece-
wise continuous polynomials as basis functions. The
system of equations is solved by using iterative methods.
The system of linear equations is solved by using soft-
ware that implements the dual threshold incomplete LU
factorization preconditioner, the look-ahead Lanczos
algorithm, and the quasi-minimal residual method.
When the matrix of the collocation equations is duly

modified by using a scaled block-limited partial pivot-
ing procedure of Gauss elimination, it is found that the
rate of convergence of the iterative method is signifi-
cantly improved and that a solution becomes possible.
The code is used to solve a model semiconductor prob-
lem that is characteristic of a fabricated semiconductor
wafer, a thermal oxide atop an ion-implanted semicon-
ductor substrate. The model problem involves solving
Poisson’s equation in two adjacent domain regions and
the interface boundary conditions. For the given model
semiconductor problem, it is found that the numerical
solution has the correct limiting behavior to demonstrate
the convergence of the software algorithms, and that the
perturbed region in the semiconductor is of the order of
0.1 mm for the given dopant density and probe-tip size.
A small perturbed region is important to the success of
the differential capacitance technique in providing a
sensitive nondestructive measurement of the surface
dopant concentration.

6. Appendix A. Linearization of Equa-
tions

As discussed in Refs. [9,10,12], the standard proce-
dure for solving a nonlinear coupled system of equa-
tions, like Eqs. (1) and (2), is to use Newton’s method,
i.e., linearize the system in terms of the Newton step,
solve the linear system for the Newton step, update the
solution by the Newton step, and monitor the norm of
the Newton step and determine whether to continue
iterating. The same is followed here, as well.

Let the initial value solution, that is to be improved, be
denoted byu with componentsui . Let the Newton step,
that is used to improve the solution and is to be deter-
mined, be denoted byy with componentsyi . To calcu-
latey , replaceui by ui + yi in Eqs. (1) and (2), and then
linearize inyi .

Linearizing Eq. (1) yields

=? Fai =yi + (=ui ) ON
j=1

­ai

­uj
yjG

–ON
j=1

F­fi

­uj
yj +

­fi

­(­uj /­x)
­yj

­x
+

­fi
­(­uj /­y)

­yj

­y
+

­fi

­(­uj /­z)
­yj

­zG = fi – =? [ai =ui ], i = 1,2, . . . ,N,

(A.1)
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where the unknown variablesyj have been collected on
the left-hand side of the equation, and the residual is
placed on the right-hand side. This equation is used for
the interior collocation points.

Linearizing Eq. (2) yields

ON
j=1

F­gi

­uj
yj +

­gi

­(­uj /­x)
­yj

­x
+

­gi

­(­uj /­y)
­yj

­y
+

­gi

­(­uj /­z)
­yj

­zG = –gi . (A.2)

This equation is used for the boundary collocation
points.

The PDEs are specified by using three user-supplied
external subroutines, one for each function term, i.e.,a,
f , andg. These subroutines specify the PDEs by provid-
ing the coefficients in the terms that are linear in the
unknown variablesyj that are given in Eqs. (A.1) and
(A.2).

The input arguments of the subroutines are:

(x , u , ­u /­x, ­u /­y, ­u /­z). (A.3)

The output arguments of the subroutines depend on
the function term.

For a, they are:

Sai ,
dai

dx
,

dai

dy
,

dai

dz
,

­ai

­uj
,

d(­ai /­uj )
dx

,
d(­ai /­uj )

dy
,

d(­ai /­uj )
dz D , (A.4)

where
dai

dx
=

­ai

­x
+ ON

j=1

­ai

­uj

­uj

­x
, (A.5)

d(­ai /­uj )
dx

=
­(­ai /­uj )

­x
+ ON

k=1

­(­ai /­uj )
­uk

­uk

­x
, (A.6)

and derivatives ofy andz follow analogously.

For f , they are:

Sfi ,
­fi

­uj
,

­fi

­(­uj /­x)
,

­fi

­(­uj /­y)
,

­fi
­(­uj /­z) D. (A.7)

For g, they are:

Sgi ,
­gi

­uj
,

­gi

­(­uj /­x)
,

­gi

­(­uj /­y)
,

­gi

­(­uj /­z)D . (A.8)

7. Appendix B. Basis Functions and
Representation

As discussed in Ref. [11], the idea of collocation and
osculating polynomials is to approximate a given func-
tion and its derivatives up to some order at specified
arguments. The interest here is in approximating the
solution um over the finite-element meshV of domain
D , whereV is formed by the tensor product of three
one-dimensional finite-element meshes, i.e.,

V = ø
i,j,k

Vi,j,k, (B.1)

where i , j , andk index the mesh intervals of the one-
dimensional finite-element meshes, that are used to
form the tensor product volume elementVi,j,k .

Within an interior element of a finite-element mesh
[12], the approximate solutionum(x,y,z) is an Hermite
tricubic piecewise continuous osculating polynomial
that is defined on each element in terms of one-dimen-
sional local basis functions, that have first-order oscula-
tion. The one-dimensional polynomial basis functions
derived in terms of Lagrange multiplier functions are of
the form [11]:

Ui (x) = [1–2L 'i (xi )(x –xi )] [(Li (x)]2, (B.2)

Vi (x) = (x –xi ) [Li (x)]2, (B.3)

where the prime indicates a derivative,i = {0,1} indexes
the distinct grid pointsxi , (x0 # x # x1), andLi (x) refers
to the two-point Lagrange multiplier functions that are
given by:

L0(x) = (x1 – x)/(x1 – x0), (B.4)

L1(x) = (x – x0)/(x1 – x0). (B.5)

These functions have the property that:

Li (xj ) = dij , (B.6)

Ui (xj ) = dij , Ui'(xj ) = 0, (B.7)

Vi (xj ) = 0, Vi'(xj ) = dij , (B.8)

whered refers to the Kronecker delta,

dij = H1,
0,

if i = j ;
otherwise

(B.9)
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The approximating polynomial in one dimension is of
the form:

p(x) = O1

i=0

{ Ui (x)f (xi ) + Vi (x)fx(xi )}; (B.10)

the approximating polynomial in two dimensions is of
the form:

p(x,y) = O1

i=0
O1

j=0

{ Ui (x)Uj (y)f (xi ,yj )

+ Vi (x)Uj (y)fx(xi ,yj )

+ Ui (x)Vj (y)fy(xi ,yj )

+ Vi (x)Vj (y)fxy(xi ,yj ) ; (B.11)

and the approximating polynomial in three dimensions
is of the form:

p(x,y,z) = O1

i=0
O1

j=0
O1

k=0

{ Ui (x)Uj (y)Uk(z)f (xi ,yj ,zk)

+ Vi (x)Uj (y)Uk(z)fx(xi ,yj,zk)

+ Ui (x)Vj (y)Uk(z)fy(xi ,yj ,zk)

+ Ui (x)Uj (y)Vk(z)fz(xi ,yj ,zk)

+ Ui (x)Vj (y)Vk(y)fyz(xi ,yj ,zk)

+ Vi (x)Uj (y)Vk(z)fxz(xi ,yj ,zk)

+ Vi (x)Vj (y)Uk(z)fxy(xi ,yj ,zk)

+ Vi (x)Vj (y)Vk(z)fxyz(xi ,yj ,zk)}; (B.12)

where (x0 # x # x1), (y0 # y # y1), (z0 # z # z1), and
the subscripts on the functionf refer to partial deriva-
tives. Given these forms, it follows that approximate
solutionum(x,y,z) is the same form as Eq. (B.12), ex-
cept that now the point functionsf , are replaced by
coefficients that are to be determined at the mesh points
of the partitionV. Thus, one seeks to determine the
values of a function and its accompanying set of partial
derivatives at each mesh point. This yields a set of eight
values per mesh point for each solution component or
partial differential equation that is to be solved.

The coefficients of the solution are collected together
in an array that is called the collocation vector. The array
is organized according to the form implied by
(nb,nu,nx,ny,nz), where the dimensioning and indexing

convention of Fortran is used,nb refers to the number of
basis functions, i.e., 8;nu refers to the number of compo-
nents to the solution, i.e.,N PDEs;nx refers to the num-
ber of mesh points associated with thex-axis;ny refers
to the number of mesh points associated with they-axis;
and nz refers to the number of mesh points associated
with the z-axis. The coefficients associated with one
mesh point and one solution component is collectively
called the local collocation vector, and the coefficients
are ordered in a manner that is suggested by Eq. (B.12),
i.e., (u,ux,uy,uz,uyz,uzx,uxy,uxyz). The local collocation
vector of the Newton step is of the form:
(y,yx,yy,yz,yyz,yzx,yxy,yxyz); see Appendix A.
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